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The Hawking radiation of an arbitrarily accelerating Kinnersley black hole is 
studied. We obtain the event horizon equation and the Hawking thermal spectrum 
formula. Both the location and the temperature of the event horizon depend on 
the time and the angles. We recover the well-known results when the 
acceleration vanishes. 

L I N T R O D U C T I O N  

Recently, we have suggested a new method to determine the location 
and the temperature of  event horizons of nonstationary black holes (Zhao 
and Dai, 1991, 1992; Zhao and Li, 1993; Yang and Zhao, 1993). Making use 
of tile method, we have successfully dealt with some spherically symmetric 
nonstationary black holes. The results are consistent with those obtained 
by calculating the vacuum expectation values of  the renormalized energy- 
momentum tensors. Furthermore, the new method is more exact and more 
convenient than the old one. 

In this paper, we deal with the Hawking effect of a non-spherically 
symmetric and nonstationary Kinnersley black hole (Kinnersley, 1969), It is 
impossible to do this by making use of  the calculation of the energy-momen- 
tum tensors. But it is possible and easy with the new method. Section 2 gives 
the equation which determines the event horizon of  the Kinnersley black 
hole. The two-dimensional event horizon surface is not spherically symmetric 
and depends on the time. In Section 3, we introduce a generalized tortoise 
coordinate transformation and reduce the Kle in-Gordon (KG) equation to a 

1Department of Physics, Beijing Normal University, Beijing 100875, China. 
ZDepartment of Physics, Heze Education College, Shan Dong 274016, China. 
3 Department of Physics, Fuzhou Teachers' College, Jiangxi 344000, China. 

2039 
0020-7748/9511000-203950750/0 �9 1995 Plenum Publishing Corporation 



2 0 4 0  Z h a o ,  Zhang, and Zhu 

simple wave equation near the event horizon. In Section 4, both the Hawking 
temperature and the radiation spectrum are shown. It is very interesting that 
the Hawking temperature depends on not only the time, but also the angles. 
Section 5 contains a discussion and conclusion. 

2. EVENT H O R I Z O N  

The metric o f  space-time of  an arbitrarily accelerating Kinnersley black 
hole is given by (Kinnersley, 1969) 

ds 2 = goo dv2 + 2g01 dv dr + 2g02 dv dO + 2g03 dv dq~ + g22 dO2 

+ g33d~ 2 (1) 

where 

g 0 0  = 

gOl  = 

g 0 2  = 

g03  = 

g 2 2  = 

2M 
1 - - - -  2 a r c o s O -  (bs incp  + c c o s q ~ - a s i n 0 ) 2 r  2 

F 

- (b cos q~ - c sin tp)2r 2 cos20 

- 1  

rZ(b sin q~ + c cos tp - a sin 0) 

sin 0 cos 0 (b cos q~ - c sin tp)r 2 

--r2, g33 = --re sin20 (2) 

+ 2ar cos 0 

s i n q ~ + c c o s t p - a s i n 0 )  

cos ~ - c sin tp) ctg 0 

(3) 

(4) 

g = - r4s in20  

g01 = _ 1 

g12 = - ( b  

g13  = - ( b  

1 g22 - 
F 2 

1 g 3 3  _ 
r2sin20 

where M = M(v) is the mass o f  the black hole, and a = a(v), b = b(v), and 
c = c(v) are acceleration parameters: a is the magnitude o f  acceleration and 
b, c are the rates o f  change with direction, v is the advanced Eddington 
coordinate. 

It is easy to calculate the metric determinant and its contravariant compo-  
nents, as follows: 
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With the aid of the null hypersurface condition 

OF OF 
g ~  - 0 (5) 

Ox ~ Ox ~ 

we infer the event horizon of the space-time described by equation (1). In 
the above 

F =  F(v, r, O, q~) = 0  (6) 

is the hypersurface equation, whose obvious expression is 

= r(v, 0, q~) (7) 

From equations (6) and (7), it is not difficult to get 

OF OF Or 
- - +  - 0  
Ov Or Ov 

OF OF Or 
- - +  - 0  
O0 Or O0 

OF OF Or 
- -  + - 0 (8) 
Oq~ Or &p 

Substituting (8) into (5), we have 

-- zg t007 -- 2g 13 22{(~F~ 33(0F~ = 0 (9) 

This is just the equation of determining the location of the event horizon. It 
follows that rH depends on not only v, but also 0, ~. So the location of the 
event horizon changes with time, and the shape of the black hole does not 
keep any symmetry. 

3. K L E I N - G O R D O N  E Q U A T I O N  A N D  G E N E R A L I Z E D  
T O R T O I S E  C O O R D I N A T E  

The dynamic behavior of the scalar particles is described by the KG 
equation in curved space-time, namely 

~v o',t:'~ 
~ - g  Ox ~ 

(lo) 
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Here, I~o is the mass of  KG particles. In the space-time (1), equation (10) 
can be written as 

gll 02~I/ 2 02~ + 2g 12 02q~ + 2g t3 02~ + g22 02xIt 
Or 2 -- Ov Or Or O0 Or Oq~ - - ~  

+ f~ aq, + fr O~t' Oq~ Oq' W ~ +fo- f f~  +f~--ffqz 1~2q t = 0 

2 
v ~ m _  

r 

where 

Og 11 Og lz Og 13 
fr = 2 gll + g12 ctg 0 + + + 

r Or O0 Oq~ 

]Co = 2 g12 4- g22 ctg 0 
r 

f = 2  
r 

4- g33 02~I~" 
Oq~ z 

(11) 

Ov Or, 2K(r - rH) \ OV J OrH 

0 O 1 (OrH~ 0 
00 00,  2K(r  - rg) \ O0 J Or, 

0 0 1 (OrH) O 
Oq~ Oq~, 2K(r - rH) \ Oq~J Or, 

gl3 (12) 

We introduce the generalized tortoise coordinate transformation 

1 
r ,  = r + ~ In[r - rH(V, O, q~)] 

V, = V -- V0, 0 ,  = 0 -- 00, q~* = q~ -- q~0 (13) 

where rtt is the location of the event horizon, and K is an adjustable parameter 
(we will find that K is the temperature function showing the Hawking radiation 
of the black hole) and is unchanged under tortoise transformation, v0, 0o, q~o 
are all arbitrary constants. From formula (13), we can deduce the follow- 
ing equations: 

,]0 
Or 2K(r ---- rH) Or, 
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172 2 
Or 2 = 1 + 2~(r"  ru) Or2, 2 K ( r -  r , )  2 dr, 

02 02 2(OrH/O0) O z [ (Orts/_O0) ]2 02 

002 - -  0 0 2  2 K ( r  - rn) Or,  dO, + L2K(r - r . ) J  o?, 

1 0 

( r -  rH)(O2rHIO0 2) -~- (OrH/OO) 2 O 

2 K ( r -  rH) 2 dr, 

02 02 2(OrHId@ d 2 r (OrnlOq~) ]2  02 
dq~ 2 - d~2, 2K(r - rH) dr, O c p ~  + 112~ 7-~H)j/ Or?, 

( r -  rH)(O2rH/d~p 2) + (Ortt/dq~) 2 d 

2 K ( r -  rH) 2 Or, 

Ov Or 2K(r ru) dv, Or, 2 ~  r ~ -r-H) 1 + 

(Ort41Ov) 0 + 
2K(r - rH) 2 Or, 

OO dr - 1 + 2 ~ ( r _  rH) O0,Or, 2-~-----~-H) 1 + 

(OrttldO) d + 
2K(r -- rn) 2 Or, 

Ocp dr 2K(r rtt) O~.dr, 2-~r~- 7~H) 1 + 

(dr~/Ocp) d + 
2K(r - rH) 2 Or, 

Substituting equation (14) into equation (11). we have 

{2t~(r - rH)[1 + 2K(r -- ru)]}-l~--glt[1 
[ 

+ 2K(r - rH)] 2 

2_ol/OrH) 

r 22{0rI4~ 2 
- k t o o /  

+ g t O 0 )  [1 + 2K(r -- rts)l 

+ ydr4=l} d2. 
to, /J 2 - -  Ov,Or, 

2K(r rH) 0 ~  

1 .] 0 2 

2 K ( r -  rH) 0 ~  

1 ] d 2 
2K(r - rH) 0r2, 

04) 
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• - -  02* "l- (2g33(O#'Hl - 2g13[1 "l- 2K(F-  FH)]I 
O0,Or, \ \ O~ il ) 

• - -  02* 2K(r -- rt4)g z2 02* 
Oq~.Or. 002 

--2K(r -- rH)g 33 a~z. j 

+ {(r-  m)[1 + 2K(r -- m)]}-  gU + \OV] 

- - + - + 

t, oco) t o o ) /  

[ [02rH\ (OrHl2]+(f~(OrH).['OrH~ 

Or, 

+ 2K(r -- rH)[1 + 2K(r -- rH)] -1 

a ,  o *  a ,  } 
• - f o ~ , - f ~ - - - f v  + ix~* = o (15) 

O~p, Ov, 

This is the KG equation expressed in tortoise coordinates. 
Now, let us deal with the KG equation near the event horizon. When 

r ---) rH(vo, 0o, ~Po), equation (15) can be reduced to 

02~[r 02~I J 02~I f 02~I/ o~xr 
a - ~ ,  + 2 - - +  B - - +  C - - +  D = 0  (16) 

Ov,Or, 00,Or, Oq~,Or, Or, 

where 

A = lira 
r.-~r H 

- g i ' [ 1  + 2K(r--  rH)] 2 + 2g ~ + g t 0 0 )  

+ 2g '3 [1 + 2K(r  -- m)] - u ~ 0 0 )  + \ o ~ / J J  

• (2K(r -- rn)[1 + 2K(r -- rH)]} -1 
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B = lim[2g2a(OrH)- 2g '2] 
r-~HL \ O0 } 

C : lim[2g33(OFH) -- 2g 13] 
,--,..L to<p/ 
�9 fog" (Og221(OrH)2 

D = h m ~ - -  + + ,--->r,vI. Or t Or }\ O0 ) 
3-[02rH\ 2 [glo(OrH i 

rL kou) 

Og33)(OrH + 22t/O2rH'~ 
Or l\ O~ l g t -~-~) 
~,2(OrH'~ ~,3(OrH'~ _ g i l l  

too) +"  to, ) / 
2-110FH \ --(Ogl' Og 21 Og3ll~ 

+ g ~- -~- )c tg  0 \ -~-r  + g,2 ctg 0 + O0 + Ocp /J 
Obviously, A, B, C, and D will all be regarded as finite constants in 

equation (16). But, unlike B, C, and D, with the null-surface equation (5), 
we know that 

[2_oi{Orn~ 2_,2{OrH~ 
limH{--glt[1 + 2K(r -- rH)] 2 + g t Or) + ~ t--~)  

2_,3{OrH)lq _ _ + + ~" tO.3qD)J[, nL 2K(F l'H) ] g 3 3 , - - ,  , /" = 0 (17) 

so the limit A is 0/0, an indefinite form. By use of the L'H6spital rule, we 
obtain the following result: 

{o< [ A = Or 4Kgi' + 2K 2g ~ + 2 -'z[OrH)g t O O ) +  2g3~-~-)]'/OrH\l 

or t, oo ) - -57  \ o,p ) j 

• (2m)-~i(r~/, Vo, 8o, ~Po) (18) 

Selecting the adjustable parameter K in equation (1 3) as 

[ Og'10g22(OrHI 20g33(OrHI 2] 
~ = Or Or t O O )  --%-Tto~)j 

• [2(1 + 2gi'  - 2g ~ OrH _ 2g,2 Or. - '  (r~vo,Oo,~o) 
Ov O0 , (19) 

_  r"ll 
a~p } J 

then we have A = 1. 
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The KG equation has been reduced to a simple wave equation. 

4. THE HAWKING THERMAL S P E C T R U M  

Separating variables as follows 

�9 (v , ,  r , ,  0 , ,  q~,)  = e - i ~ V * R ( r , ) O ( O , ) ~ ( q ~ , )  (20) 

and substituting this into equation (16), we have 

+ (D - 2i~o) = - B--~- + C--~- (21) 

It can be seen that both sides are equal to the same complex constant number, 
which is - (k0  + 2it%), and then 

R" + [D + h0 - 2i(oJ - ~Oo)]R' = 0 (22) 

O'  qb' 
B-O- + C ~ -  = h0 + 2ieo0 (23) 

Because for radiation only the radial equation is relevant, we are not 
interested in equation (23). The solution of equation (22) is 

~ ~ e-i~ (24) 

~I/~ u t ~  e- i~~176176 - (D+xO)r .  (25 )  

Near the event horizon, we have 

1 
r ,  -- ~ ln(r - rH) (26) 

and equation (25) can be written as 

XlI'~ ~ e - i t ~  - -  rH) i (~-~176 - -  rH) -w+x~ (27) 

It is clear that _~q'~ is not analytical at r = rn, so we have to analytically 
extend it through the lower half complex r plane into the inside of the event 
horizon and obtain 

Ir - rill ~ Ir - rH] e - i~  = (rH - r ) e  - ~  (28) 

So we have 

qt~ < rH) 

e- io~v ,[ (r l4  - -  r)e-i~li(O,-o~O/K[(rt_i _ r)e-i~]-(O+Xo)/2~ 

: e-i~176176176176176 (t~176176 (29) 
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The scattering probability of the outgoing wave at the horizon is 

ge'~ > rH) 2 e -2~(~-~~ 
(30) 

According to the method suggested by Damour and Ruffini (1976) and Sannan 
(1988), the Hawking thermal spectrum is given by 

1 
N,. = (31) 

exp[(to - O~o)/KBT] - 1 

where KB is Boltzmann's constant. The Hawking temperature is given by 

8[ 
T - (32) 

2rrKB 

It follows that ~ is the function determining the Hawking temperature. 
The temperature depends not only on the time, but also the angles 0 and ~p. 

5, CONCLUSION AND DISCUSSION 

When a = b = c = 0, the metric (1) is reduced to Vaidya metric 
(Balbinot, 1986) 

From equations (9) and (19) we have 

2M K 
r a - - -  ~ 2 M ( 1  + 4 M ) ,  T -  

1 - 2/'H 2rrKB 

1 -- 2PH 1 -- 4M 
8[ . . . .  (34) 

4M 4M 

These are just the well-known event horizon and temperature of the Vaidya 
black hole. 

We have studied the Hawking radiation of the Kinnersley black hole 
whose mass changes with time. Both the location of the event horizon and 
the Hawking temperature depend on the time and the angles. 

We emphasize that there is a conspicuous absence of any report up to 
now on the fact that the Hawking temperature changes with angles, for which 
our research has supplied an example where the Hawking temperature at a 
point differs from another point on the two-dimensional simultaneity surface 
of the event horizon. 
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